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A local approach to dimensional reduction
I. General formalism
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Abstract

We present a formalism for dimensional reduction based on the local properties of invariant
cross-sections (“fields”) and differential operators. This formalism does not need an ansatz for the
invariant fields and is convenient when the reducing group is non-compact.

In the approach presented here, splittings of some exact sequences of vector bundles play a key
role. In the case of invariant fields and differential operators, the invariance property leads to an
explicit splitting of the corresponding sequences, i.e. to the reduced field/operator. There are also
situations when the splittings do not come from invariance with respect to a group action but from
some other conditions, which leads to a “non-canonical” reduction.

In a special case, studied in detail in the second part of this article, this method provides an algo-
rithm for construction of conformally invariant fields and differential operators in Minkowski space.
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1. Introduction

Symmetry and reduction have always—sometimes implicitly—been among the main
tools in the arsenal of theoretical physics. Many methods that utilize the symmetry of
physical systems have been proposed.
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In this paper, we develop a technique for dimensional reduction of invariant vector fields
and one-forms, as well as for reduction of invariant differential operators. We use the
methods of differential geometry which allow us to make the reduction procedure simple
and natural. In the second part of the paper[5] (briefly referred to as Part II), we apply our
method to the problem of obtaining conformally invariant fields and differential operators
in Minkowski space.

The main ideas of our method are the following. Let the Lie groupG act by bundle
morphisms on the vector bundleξ over a smooth finite-dimensional manifoldB, and let
C∞(ξ)G stand for the set of allG-invariant sections ofξ . Our goal is to construct the
reduced bundle ξG, i.e. a bundle the space of whose sections,C∞(ξG), is in a bijective
correspondence withC∞(ξG). We give the construction of the reduced bundleξG (if certain
conditions are satisfied).

The construction of the reduced bundle is easily applicable to the important particular
cases of the tangent and cotangent bundles ofB. In these two cases, the action ofG naturally
yields certainG-intertwining short exact sequences of vector bundles. It turns out that
these sequences are very useful for the classification of theG-invariant vector fields and
one-forms.

The dimensional reduction of differential operators is based on the jet bundle picture.
The language of jet bundles reveals the geometry of the differential operators and—on the
technical side—reduces the operations on differential operators to simple algebraic manip-
ulations. The essential ingredient of the dimensional reduction of a differential operator
in this formalism is the restriction of the operator to a submanifold ofB. To perform this
restriction, one has to find splittings of certain short exact sequences of jet bundles. In the
case ofG-invariant differential operators, this splitting is provided automatically by the
G-invariance.

Our method is purely geometric, using only the geometrically natural structures on the
manifold. It applies to any smooth finite-dimensional manifoldB and to any Lie groupG.
We note that the method we propose can be applied whether or not the groupG is compact
or not. IfG is non-compact, some interesting phenomena may occur—a simple example is
given in Appendix A of Part II.

This method is applicable to tensor products of vector bundles and to spinor bundles,
which we plan to study in near future. We believe that our technique can be useful in
Kaluza–Klein-type theories.

The plan of the first part of the paper is the following. InSection 2we describe the method
for dimensional reduction, paying special attention to the case of dimensional reduction of
the tangent and cotangent bundles. InSection 3we briefly introduce some notions from
the theory of differential operators on vector bundles, and inSections 4 and 5we develop
the technique for dimensional reduction of invariant differential operators. InSection 6we
explain how to reduce the action of a Lie groupK whose action onξ commutes with that
of the reducing groupG.

In the second part of the paper, we apply our method to obtain conformally invariant
vector fields, one-forms and differential operators in Minkowski space. This construction is
based on the observation of Dirac from the 1930s that the conformal group in Minkowski
space is locally isomorphic to the orthogonal group in the six-dimensional space with
signature (2, 4). Our method allows us to find the global transformation laws of the fields,
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the invariant subbundles, and the so-called equations of conformal electrodynamics as well
as the admissible gauge transformations.

2. Dimensional reduction of tangent and cotangent bundles

Here we describe the method of dimensional reduction, paying special attention to the
dimensional reduction of the tangent and cotangent bundles of a smooth manifold. All
manifolds, bundles and mappings in the text are supposed to be smooth(C∞).

LetB be a finite-dimensional manifold andξ = (E, π, B) be a finite-dimensional vector
bundle overB; let ξb = π−1(b) denote the fiber ofξ over the pointb ∈ B. Let C ⊂ B

be a submanifold ofB, and letξC (or ξ |C) stand for the bundlei∗ξ induced by the natural
embeddingi : C ↪→ B; in other words,ξC = (E′, π ′, C), whereE′ := π−1(C) andπ ′ is
the restriction ofπ toE′. By “dimension of the bundle” we will mean the dimension of the
typical fiber. The vector space of all sections ofξ will be denoted byC∞(ξ).

Let the Lie groupG act from the left onξ by vector bundle morphisms, and letT :
G × E → E and t : G × B → B be the actions ofG on the total space and the base,
respectively (i.e.π ◦Tg = tg ◦π and the restrictionTg : ξb → ξtg(b) be a linear isomorphism
for eachg ∈ G). This action naturally induces an action ofG onC∞(ξ) by

g(ψ) := Tg ◦ ψ ◦ t−1
g , g ∈ G, ψ ∈ C∞(ξ).

The subspace ofC∞(ξ) consisting of allG-invariant sections will be denoted byC∞(ξ)G.
Under certain conditions, there exists a vector bundleξG, called areduced vector bundle,

such that the spaceC∞(ξG) of all its sections is in a bijective correspondence

θ : C∞(ξG)→ C∞(ξ)G (1)

with the spaceC∞(ξ)G of all G-invariant sections ofξ . The groupG will be referred to as
a reducing group and the procedure as aG-dimensional reduction. Below we discuss the
conditions imposed on the action ofG on ξ .

Condition A. TheG-orbits onB are of one and the same type and form a locally trivial
bundle

p : B → B/G, (2)

wherep is the natural projection.

The fibers of(2) are homogeneousG-spaces of typeG/H , whereH is some closed
subgroup ofG. The groupG acts naturally onG/H from the left byg[g′] := [gg′]. The
local triviality of (2) means that each pointx ∈ B/G has a neighborhoodV ⊆ B/G such
that there exists an isomorphismΦ : p−1(V )→ V × (G/H) satisfying the relation

Φ ◦ tg(b) = (p(b), g[π2 ◦Φ(b)]),

whereb ∈ p−1(V ), g ∈ G, andπ2 is the canonical projection

π2 : V × (G/H)→ G/H : (v, [g]) → [g].
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Condition Bimposes restrictions on the actionT of G on the total spaceE. If Gb is
the stationary group ofb ∈ B, then the restrictionT : Gb × ξb → ξb determines a linear
representation ofGb in ξb. Let stξb be the subspace ofξb consisting of all vectors fixed
with respect to the representation ofGb in it:

stξb := {u ∈ ξb|Tg(u) = u ∀g ∈ Gb}.
The importance of the subspaces stξb in the construction ofξG is due to the fact that ifψ
is aG-invariant section ofξ , thenψ(b) ∈ stξb for eachb ∈ B.

Condition B. The set of vector subspaces stξb ⊆ ξb form a vector subbundle stξ which
will be called astationary subbundle of ξ .

If the above two conditions are satisfied, the vector bundleξ will be called aG-reducible
vector bundle. Its reduced vector bundle,ξG, is a vector bundle overB/G and has the same
dimension as stξ . The local coordinate realizations of stξ can be constructed as follows.
Let {Vα} be a cover ofB/G, andφα : Vα → B be local sections of the bundle(2). Let
Nα := φα(Vα) be the graphs ofφα (Nα are submanifolds ofB transversal to the orbits ofG
and of dimension equal to the one ofB/G), andiα : Nα ↪→ B be the natural embeddings.
Then the restrictionsξG|Nα := stξ |Nα = i∗α(stξ) are the coordinate realizations ofξG. The
cocycle gluing these representations can be naturally constructed with the help of the action
of G onξ [4]. Since the general procedure contains many technicalities, and in the physical
example considered in the second part of the paper we do not need more than one chart, we
do not treat the general case.

Remark 2.1. In general, the reduced bundleξG is constructed as the set of its coordinate
realizations and the morphisms of transition between them. A coordinate realization ofξG is
obtained by taking a submanifoldN ⊂ B transversal to theG-orbits inB (i.e. by choosing
a section of the bundle(2) whose image is transversal to theG-orbits), and restricting the
base of the stationary subbundle stξ to N . The transition morphisms come from the action
of the groupG. It is possible that the bundle(2) does not have a global section. In this case
we have to consider a sufficient set of transversal local sections. The maximal atlas of the
reduced bundleξG is the set of all transversal local sections ofp : B → B/G and the
corresponding transition morphisms.

A different choice of a local realizationN of B/G would amount only to a reparametriza-
tion and would not change the essential features of the reduced objects. In this sense, we
can say thatθ andξG do not depend onN .

Remark 2.2. The setC∞(ξ)G of all G-invariant sections ofξ form a module over the set
of G-invariant functions in the baseB because eachG-invariant function is constant on
each orbit ofG in B. On the other hand, the sections,C∞(ξG), of the reduced bundleξG
are a module over the ringC∞(B/G). From our construction, it is clear that the mapθ is
a homomorphism of theC∞(B/G)-moduleC∞(ξG) to theC∞(B)G-moduleC∞(ξ)G.

Let us consider in detail the case of the tangent bundleτ(B) = (T (B), π, B) of a
finite-dimensional manifoldB. Let the action of the Lie groupG onB satisfyCondition A.
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Then the tangent lift oft, t∗ : G × T (B)→ T (B), defines an action(t∗, t) of G on τ(B)

which turnsτ(B) into aG-reducible vector bundle. Letτ v(B) be thevertical subbundle of
τ(B) which by definition consists of the vectors tangent to the fibers of the bundle(2):

τ v(B)b := τ(p−1(p(b)))b.

Let p∗τ(B/G) be the bundle overB induced fromτ(B/G) by the projectionp : B →
B/G; clearly,G acts trivially onp∗τ(B/G). Then it is known[2, Section IX.1]that there
exists a natural short exact sequence (SES)

0→ τ v(B)
i→τ(B)

j→p∗τ(B/G)→ 0, (3)

wherei is the natural embedding andj is the natural projection. This SES isG-intertwining,
i.e. the action ofG commutes with the morphismsi andj . Below, we explain how to perform
aG-dimensional reduction of(3); we consider only the case of the bundle(2)being globally
trivial since it is sufficient for our purposes.

Let us choose a global section of(2) and denote its graph byN . Then the restrictions of
stτ v(B), stτ(B) and stp∗τ(B/G) toN are coordinate realizations of the reduced bundles
τ v(B)G, τ(B)G and(p∗τ(B/G))G, respectively. Obviously, the SES

0→ τ v(B)b
i→τ(B)b

j→p∗τ(B/G)b → 0 (4)

of Gb-modules overb ∈ N is (trivially) intertwining with respect to the corresponding
representations of the stationary subgroupGb.

Now we want to restrict theGb-modulesτ v(B)b, τ (B)b, andp∗τ(B/G)b to their sta-
tionary submodules, stτ v(B)b, stτ(B)b, and stp∗τ(B/G)b ∼= p∗τ(B/G)b, respectively.
Do the stationary submodules form a SES?

In general, the answer to the above question is negative. To understand why, let us consider
the SES ofG-modules

0→ L0
i→L

j→L1→ 0

intertwining with respect to the corresponding representationsD0,D,D1 of G, i.e. such
that

i ◦D0(g) = D(g) ◦ i, j ◦D(g) = D1(g) ◦ j
for eachg ∈ G. Then i(L0) is an invariant subspace ofL. Each vectorl ∈ L can be
represented as

l =
(

i(l0)

l̃

)
=
(

i(l0)

0

)
+
(

0
l̃

)
,

(
i(l0)

0

)
∈ i(L0)

for somel0 ∈ L0. Note that this representation ofl is not unique sinceL1 is not naturally
embedded inL. The fact thatj ◦ i = 0 implies thatj (l) = j ((0, l̃)T).

In this representation, the action ofD(g) can be written as

D(g)l =
(

d00(g) d01(g)

0 d11(g)

)(
i(l0)

l̃

)
=
(

d00(g)i(l0)+ d01(g)l̃

d11(g)l̃

)
,
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and

D1(g) ◦ j (l)=D1(g) ◦ j
(

i(l0)

l̃

)
= j ◦D(g)

(
i(l0)

l̃

)

= j

(
d00(g)i(l0)+ d01(g)l̃

d11(g)l̃

)
= j

(
0

d11(g)l̃

)
.

We see thatj (l) ∈ stL1 if and only if ∀g ∈ G, d11(g)l̃ = l̃, while l ∈ stL if and only if
∀g ∈ G,

d00(g)i(l0)+ d01(g)l̃ = i(l0), d11(g)l̃ = l̃.

Hence, in general, the inclusionj (stL) ⊂ stL1 is strict, i.e. the mapj : stL→ stL1 may
fail to be an epimorphism. If, however, the representationD is decomposable (i.e. ifL is a
direct sum of two invariant subspaces), then the sequence

0→ stL0
i→stL

j→stL1→ 0

will be a SES ofG-modules. The obstruction to decomposability can be studied by using
tools of algebraic topology; we are planning to explain this in detail elsewhere.

If Condition Ais satisfied, then the representation ofGb in τ(B)b is decomposable. The
proof of the decomposability goes as follows. Sincei(τ v(B)) is aG-invariant subbundle
of τ(B), i(τ v(B)b) is aGb-invariant subspace ofτ(B)b. Condition Aguarantees that for
eachb ∈ B, there exists a submanifold ofB, namely

W(b) := {Φ−1(x, π2 ◦Φ(b))|x ∈ V ⊆ B/G}
(V is an open subset ofB/G containingp(b)), which is transversal to the orbits ofG
in B, containsb, and consists of points with one and the same stationary groupGb. This
means thatGb acts trivially onW(b) and, hence, onτ(W(b)), soτ(W(b))b is the invariant
complement ofi(τ v(B)b) with respect to the representation ofGb in τ(B)b. Thus, the
representation ofGb in τ(B)b is decomposable, which yields the SES

0→ stτ v(B)b
i→stτ(B)b

j→p∗τ(B/G)b → 0.

Finally, taking into account that(p∗τ(B/G))G ∼= τ(N), we obtain that after aG-dimensional
reduction,(3) converts into the SES

0→ τ v(B)G
i→τ(B)G

j→τ(N)→ 0. (5)

The G-dimensional reduction of the cotangent bundleτ ∗(B) is similar. The actiont of
G on B generates a natural contragradient action(t̂ , t) := (t∗−1, t) of G on τ ∗(B). The
decomposability of the action(t∗, t) implies the decomposability of(t̂ , t), hence after a
G-dimensional reduction the dual of(3) G-intertwining SES goes into the SES

0← (τ v(B)∗)G
i∗←τ ∗(B)G

j∗←τ ∗(N)← 0.
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In general,(τ v(B)∗)G �= (τ v(B)G)∗ (an example is given in Appendix A of Part II).
However, if all finite-dimensional representations ofGb are decomposable (in particular, if
Gb is compact), it is easy to prove that these two bundles coincide.

The setC∞(τ (B))G of all G-invariant vector fields is in bijective correspondence with
the set of all sections of the reduced bundle,C∞(τ (B)G). But (5) implies that

τ(B)G ∼= τ v(B)G ⊕ τ(N),

hence, there exits a bijective correspondence between theG-invariant vector fields and
the couples of a “scalar field” (a section ofτ v(B)G) and a vector field onN . The above
construction, however, does not determine a fixed splitting of(5) becauseτ(N) is not
canonically embedded inτ(B)G. One needs additional information to fix a certain splitting.
The case ofG-invariant differential forms is completely analogous.

Remark 2.3. If C is aG-invariant submanifold ofB, the restriction toC yields naturally
the SES

0→ τ(C)
m→τ(B)C

n→ν(C)→ 0 (6)

of vector bundles overC; hereν(C) is the quotient bundle,τ(B)C/τ(C). The SES(6) and
its dual areG-intertwining, which implies theG-invariance ofm(τ(C)) andn∗(ν∗(C)) as
subbundles ofτ(B)C andτ ∗(B)C , respectively.

Remark 2.4. Let ζ ∈ C∞(τ (B)) andψ ∈ C∞(τ ∗(B)) be aG-invariant vector field
and one-form, respectively. The local coordinates(xµ) of B (µ = 1, . . . ,dimB) induce
local coordinates(xµ,dxµ) of τ(B) and(xµ, ∂/∂xµ) of τ ∗(B). In these coordinates, the
conditions forG-invariance of the sections ofτ(B) andτ ∗(B) read

g(ζ )µ(b) := (tg∗ζ )µ(b) =
∂t

µ
g (tg−1(b))

∂xν
ζ ν(tg−1(b)) = ζµ(b),

g(ψ)µ(b) := (t̂gψ)µ(b) =
∂tν

g−1(b)

∂xµ
ψν(tg−1(b)) = ψµ(b),

whereg ∈ G.

Example 2.1. Let us consider the example of the dimensional reduction of theO0(3)-
invariant vector fields onR3, i.e. letB := R

3\{0} and letG := O0(3) act by its tangent lift
on τ(R3). (The subscript “0” means “the connected component of the unit element”.) The
orbits of the action ofO0(3) onR

3 are the spheres centered at the origin0 := (0,0,0).
For a baseN of the reduced bundle(2) we can choose any submanifold diffeomorphic

to B/G ∼= R+, e.g.N := {(χ(z),0, z)|z > 0}, whereχ : R+ → R satisfiesχ ′(z) > 0 for
anyz > 0.

For eachb := (x, y, z) ∈ B, the vertical subspace,τ v(B)b, is the planeτ(Sb)b tangent
to the sphereSb of radiusb :=

√
x2+ y2+ z2 at pointb. The one-dimensional quotient

spacep∗τ(B/G)b = τ(B)b/τ
v(B)b can be realized as any subspace ofτ(B)b transversal

to τ v(B)b.
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The stationary subgroupGb consists of the rotations around the straight line through
the points0 andb. It acts freely onτ(Sb)b, so stτ v(B)b = stτ(Sb)b consists only of the
zero vector atb. Thus,(τ v(B)G)b consists only of the zero vector atb, (τ (B)G)b is the
one-dimensional subspace of the radial vectors atb, and((p∗τ(B/G))G)b can be realized
asτ(N)b.

3. Differential operators on vector bundles

In this section we briefly introduce the necessary facts and notations concerning the theory
of differential operators on vector bundles in terms of jets of sections. The interested reader
can find a succinct introduction to the theory of jet bundles in[7]; detailed expositions (with
numerous examples) can be found in[6,9], and more mathematical aspects in[1].

Let ξ be a vector bundle overV , Ib(B) be the ideal of the ringC∞(B) consisting of all
functions vanishing atb ∈ B, andI k

b (B) ⊂ C∞(B) be the ideal of functions representable
as a product ofk functions fromIb(B). LetZk

b(ξ) stand for the vector space of those sections
of ξ which are products of elements ofI k+1

b (B) andC∞(ξ), andJ k(ξ)b be the quotient
space

J k(ξ)b := C∞(ξ)/Zk
b(ξ).

The canonical linear mappingC∞(ξ)→ J k(ξ)b : ψ → J k(ψ)(b) maps a sectionψ into
its k-jet at b ∈ B, J k(ψ)(b). Thek-jet is the coordinate-free concept for the section (“the
field”) ψ and its derivatives up to orderk atb. Hence,J k(ψ)(b) = J k(φ)(b) means that in
some (and hence in all) local coordinates, the Taylor series ofψ andφ aroundb agree up
through orderk. The mapping

J k : C∞(ξ)→ C∞(J k(ξ)) : ψ → J k(ψ)

is called ak-jet of the sectionψ . (To avoid confusion, we would like to alert the reader that
we use the notationJ k(ξ) both for the bundle of jets and for its total space; in the above
formula,C∞(J k(ξ)) stands for the set of all sections of the vector bundleJ k(ξ), while in
the formula below it means the total space.)

The vector bundle structure of the union

J k(ξ) :=
⋃
b∈B

J k(ξ)b

is natural: the local coordinates(xµ, ua) (µ = 1, . . . ,dimB; a = 1, . . . ,dim ξ) of ξ gen-
erate local coordinates(xµ, ua, ua

µ1
, . . . , ua

µ1,...,µk
), (1 ≤ µ1 ≤ · · · ≤ µi ≤ dimB; i =

1, . . . , k) of J k(ξ), where

ua
µ1,...,µi

(J k(ψ)(b)) := ∂i

∂xµ1, . . . , ∂xµi
ψa(b), (7)

and the transition functions follow from the well-known formulae for transformation of par-
tial derivatives under a change of variables. From the definition,J 0(ξ) = ξ . The dimension
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of the fibers of vector bundleJ k(ξ) is

dimJ k(ξ) =
(

dimB + k

k

)
dim ξ.

Let πk,l : J k(ξ) → J l(ξ), k > l ≥ 0 denote the natural projections (“cutting off” all
derivatives of orderl + 1, . . . , k).

Let ξ andη be vector bundles overB. A differential operator (DO) of orderk from ξ to
η is a mapping

D : C∞(ξ)→ C∞(η) : ψ → Dψ

such thatJ k(ψ)(b) = 0 impliesDψ(b) = 0. If D is a linear mapping, it is called alinear
differential operator. Let Diff k(ξ, η) and LDiffk(ξ, η) stand, respectively, for the vector
spaces of DOs and linear DOs of orderk from ξ to η.

There exists a bijective correspondence between the space LDiffk(ξ, η) and the space
Hom(J k(ξ), η) of vector bundle morphisms over the identity inB. This correspondence
is based on the fact that every vector bundle morphismT : ζ → η over the identity inB
generates naturally a mapping

T∗ : C∞(ζ )→ C∞(η) : φ → T∗(φ) := T ◦ φ,

and each linear DOD ∈ LDiff k(ξ, η) corresponds to a vector bundle morphismT ∈
Hom(J k(ξ), η) such thatD = T∗ ◦ J k, i.e. that the diagram

commutes. The morphismT is called thetotal symbol of D. For a nonlinear DO this
construction is analogous, but in this caseT is simply a fiber preserving mapping.

Parenthetically, in the language of category theory (see, e.g.[3]), the couple(J k, J k(ξ))

is a universal element for the covariant functorF = (FOb,FMor) from the categoryV(B)

of vector bundles overB to the category of linear DOs of orderk from ξ ∈ V(B) to another
vector bundle overB. Namely, ifη, ζ ∈ V(B) andT ∈ Hom(η, ζ ), then

FOb(η) = LDiff k(ξ, η), FMor(T ) = T∗ = T ◦ .
One can differentiate simultaneously both sides of the differential equationDψ = φ,

thus obtaining a differential operator of higher order acting onψ . The formal definition of
this is the following. LetD = T∗ ◦ J k ∈ Diff k(ξ, η). There exists a unique fiber preserving
mappingP l(T ) : J k+l (ξ )→ J l(η) such that the diagram
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commutes. Thelth prolongation of D is by definition

P l(D) := P l(T )∗ ◦ J k+1 = J l ◦ T∗ ◦ J k ∈ Diff k+l (ξ, J l(η)).

In general,Rk,l := kerP l(T ) is a family of linear subspaces of the vector bundleJ k+l (ξ ).
A DO D ∈ LDiff k(ξ, η) said to beformally integrable if for each l ≥ 0 the following
conditions are satisfied:

(a) Rk,l is a vector subbundle ofJ k+l (ξ );
(b) the natural projectionπk+l+1,k+l : Rk,l+1→ Rk,l is an epimorphism.

For a formally integrable DO, the subbundleRk,0 ⊂ J k(ξ) is called itsequation.
The meaning of the formal integrability of a DO is that for a formally integrable DO

D ∈ Diff k(ξ, η), by differentiatingl times the equationDψ = 0, one can never obtain a
condition on the derivatives ofψ that contains no derivatives of orderk + l but only lower
order derivatives (see the example below).

The formal integrability of a differential operator can be established by using methods
of homological algebra (for references see, e.g.[1]). An example of a differential operator
that is not formally integrable is the following.

Example 3.1. Let ξ andη be vector bundles overR3 with typical fibersR andR
2, respec-

tively, and

D :=
(

∂zz − y∂xx

∂yy

)
∈ LDiff 2(ξ, η),

wherex, y andz are the coordinates inR3. Thenπ3,2 : R2,1 → R2,0 is an epimorphism,
butπ4,3 : R2,2→ R2,1 is not, because the second prolongation ofD yields the condition
uxxy = 0 which was not present inR2,1. In fact, there are infinitely many conditions of this
kind that appear in the higher prolongations, and the general solution ofDψ = 0 contains
only 12 parameters:

ψ(x, y, z)= xy(α1z
3+ 3α2z

2+ α3z+ α4)+ y(α5z
3+ α6z

2+ α7z+ α8)

+(α1x
3+ 3α5x

2+ α9x + α10)z+ α2x
3+ α6x

2+ α11x + α12.

This example is studied in detail in[8, Introduction].

4. Restriction of a differential operator to a submanifold

The dimensional reduction of an invariant DOD ∈ Diff k(ξ, η)G is closely related to the
problem of restrictingD toN , whereN is a submanifold ofB. By “restrictingD toN ”, we
mean constructing a DODN ∈ Diff k(ξN , ηN) from D by means of the natural embedding
i : N ↪→ B. This procedure is not naturally defined, so in this section we will explain how
it can be performed.

To understand the problem, let us first consider it in local coordinates. Let dimB = n,
dimN = ν, and let the local coordinatesx1, . . . , xn be such that

N = {xν+1 = · · · = xn = 0}.
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We will call x1, . . . , x
ν “internal forN ”, andxν+1, . . . , xn “external forN ” coordinates.

Let ψ ∈ C∞(ξ), and letψ ◦ i ∈ C∞(ξN) be its restriction toN .
If we calculate thek-jet of ψ , and then restrictJ k(ψ) to N , we obtainJ k(ψ) ◦ i ∈

C∞(J k(ξ)N). For eachb ∈ N, J k(ψ)(b) contains derivatives with respect to all coordi-
nates,x1, . . . , xn. At the same time, if we first restrictψ to N and then take thek-jet of
ψ ◦ i, we obtainJ k(ψ ◦ i) ∈ C∞(J k(ξN)). Sinceψ ◦ i depends only on the internal for
N coordinates,x1, . . . , xν , its k-jet, J k(ψ ◦ i), contains derivatives with respect to these
coordinates only. Thus, the dimensions ofJ k(ξ)N andJ k(ξN) are(

n+ k

k

)
dim ξ and

(
ν + k

k

)
dim ξ,

respectively.
If D contains only differentiations with respect to internal forN coordinates (in which

case we will say thatD is internal for N ), the restricted DODN is simply equal toD. What
to do, however, ifD is not internal forN?

Let us first note that there exists a natural projectionjk : J k(ξ)N → J k(ξN) which
simply is “cutting off” all non-internal derivatives, i.e. those containing at least one external
for N partial derivative. The relationship between the total symbols ofD andDN can be
simply expressed with the help ofjk by means of the diagram

Clearly, for an internal DOD, the total symbol ofDN is defined naturally byT = TN ◦ jk.
If the DO is not internal, one needs some additional information.

Let I k
N be the subbundle ofJ k(ξ)N consisting of thek-jets of all sections ofξ that vanish

onN :

I k
N := {J k(ψ)(b)|ψ ∈ C∞(ξ) s.t. ψ(b) = 0 ∀b ∈ N}.

In other words,I k
N consists of those elements ofJ k(ξ)N all internal forN derivatives of

which (including the zeroth derivatives) are 0. Using the notations(7), the coordinates of
the elements ofI k

N satisfy

ua = 0, ua
µ1,...,µi

= 0, 1≤ µ1 ≤ · · · ≤ µi ≤ ν, i = 1, . . . , k.

If ik : I k
N ↪→ J k(ξ)N is the natural embedding, then clearlyjk ◦ ik = 0, and the horizontal

sequence in the diagram below is exact:

(8)
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The essence of the problem of restricting a DO toN is that whileJ k(ξ)N ∼= I k
N ⊕ J k(ξN),

the bundleJ k(ξN) is not naturally embedded inJ k(ξ)N . Therefore, to defineTN , one needs
to choose a fiber preserving mappingS : J k(ξN) → J k(ξ)N over the identity inN such
that

jk ◦ S = identity inJ k(ξN). (9)

Then the total symbol ofDN is defined by

TN = T ◦ S. (10)

The condition(9) on S guarantees that for an internal forN DO, (10) yields a DO co-
inciding with the natural restriction ofD to N . The mappingS is called asplitting rela-
tion.

One can defineS by specifying its imageS(J k(ξN)) ⊂ J k(ξ)N , which can be defined as
a kernel of the total symbolT of some DOD of orderk acting onC∞(ξ).

To clarify the matters, let us consider the following example (more examples will be
given in Part II).

Example 4.1. Let B := R
2 and(x, y) be the Cartesian coordinates, letξ be a globally

trivial bundle overB with fiberR, and letN := {y = 0} ⊂ B.
Then the fiber coordinates ofJ 2(ξ)N are(u, ux, uy, uxx, uxy, uyy), while the fiber coordi-

nates of J 2(ξN) are only the ones that do not containy-derivatives, i.e.(u, ux,

uxx).
The Laplacian∆ := ∂xx + ∂yy ∈ LDiff 2(ξ, ξ) is not internal forN because it contains

y-derivatives.
Let us choose the splitting conditionS to be defined by specifying its image,S(J 2(ξN)) :=

kerT, whereT is the total symbol of the DOD := ∂xx−∂yy+3∂x . Thenuyy can be expressed
as uyy = uxx + 3ux , so the restricted toN Laplacian becomes∆N = 2∂xx + 3∂x ∈
LDiff 2(ξN , ξN).

Remark 4.1. In general, the order ofDN can be higher than the order ofD; for example, if
in the above example we had chosenS = uxxx−2uxx−uyy−2ux , then the reduced Laplacian
would have become∆N = ∂xxx − ∂xx − 2∂x ∈ LDiff 3(ξN , ξN). This can happen whenS
contains derivatives of order higher than the order ofD. However, a DOD ∈ Diff m(ξ, η)

can be considered as an element of Diffl (ξ, η) for all l > m. Therefore, all constructions
from this section hold if byk we mean the maximum of the order ofD and the order of the
highest derivative in the splitting relationS.

5. Dimensional reduction of invariant differential operators

Let ξ andη beG-reducible vector bundles over the manifoldB with the same actiont
of G onB. Then the actions ofg ∈ G onC∞(ξ) andC∞(η),

gξ : ψ → T ξ
g ◦ ψ ◦ t−1

g , gη : χ → T n
g ◦ χ ◦ t−1

g ,
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generate an action ofg on the DOs:

g(D) := gη ◦D ◦ (gξ )−1, D ∈ Diff k(ξ, η).

A DO D ∈ Diff k(ξ, η) is G-invariant if g(D) = D. The space or allG-invariant DOs will
be denoted by Diffk(ξ, η)G. If ψ ∈ C∞(ξ)G andD ∈ Diff k(ξ, η)G, thenDψ ∈ C∞(η)G,
therefore eachG-invariant DOD generates a reduced DO

DG := θ−1 ◦D ◦ θ : C∞(ξG)→ C∞(ηG),

whereθ is the map defined in(1). To constructDG, one must do the following:

(a) find the stationary subbundles stξ and stη;
(b) choose a submanifoldN ∼= B/G transversal to theG-orbits inB;
(c) restrict the DOD : C∞(stξ)→ C∞(stη) to N .

As pointed out inSection 4, to perform step (c) in this algorithm, one needs a fiber
preserving mappingS : J k(ξN) → J k(ξ)N . In the case of dimensional reduction of a
G-invariant DO, there exists a natural splitting of the SES(8) due to the possibility to
extend uniquely byG-invariance each section of stξN to a section over a neighborhood of
N . In the rest of this section, we explain how this can be done.

TheLie derivative L : C∞(ξ) → C∞(g∗ ⊗ ξ) of the action(T , t) of the Lie groupG
on the sectionψ ∈ C∞(ξ) is defined by

Lψ(Y ) := d

dt
etY(ψ)|t=0 = d

dt
Texp(tY) ◦ ψ ◦ texp(−tY)|t=0,

whereg∗ is the dual of the Lie algebrag of G, andY ∈ g. The stationary subbundle stξ

is invariant under the action ofG on ξ , hence the Lie derivative has a natural restriction to
stξ which will also be denoted byL.

Let

L̃ : J 1(stξ)→ g∗ ⊗ stξ

be the total symbol of the Lie derivativeL ∈ LDiff 1(stξ, g∗ ⊗ stξ). The(k− 1)th prolon-
gation ofL provides a splitting relation for eachG-invariant DOD ∈ Diff k(ξ, η)G. Indeed,
let

P k−1(L̃) : J k(stξ)→ J k−1(g∗ ⊗ stξ)

be the symbol of the(k − 1)th prolongation ofL,

Rk
N := (kerP k−1(L̃))N ⊂ J k(stξ)N

be the restriction of its kernel toN , andik andI k
N have the same meaning as in(8) (with stξ

instead ofξ ). Then it can be shown thatRk
N defines a splitting of(8), i.e. it is a complementary

subbundle ofik(I k
N) in J k(stξ)N :

J k(stξ)N = ik(I k
N)⊕ Rk

N .
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This means that for eachb ∈ N , all non-internal forN derivatives inJ k(ψ)(b) can be
expressed in terms of the purely internal derivatives by solving the system

P k−1(L̃)N = 0,

which provides us with an algorithm for restriction toN , and hence for dimensional reduc-
tion of eachG-invariant DO of orderk.

A very important for this algorithm fact is that the Lie derivative is a formally integrable
differential operator. Due to the formal integrability ofL, in order to reduce aG-invariant
DO of orderk, one does not need to considerP l(L̃)N = 0 for l > k−1, so the above theory
always yields an algorithm consisting of finitely many steps. This, in particular, implies that
in the process of reduction of aG-invariant DO the order of the operator does not increase,
i.e. if D ∈ Diff k(ξ, η)G, thenDG ∈ Diff m(ξG, ηG), wherem ≤ k.

Remark 5.1. The short exact sequence of vector bundles in the diagram(8)admits different
splittings. However, in the procedure of reduction of aninvariant DO, it is the requirement
for G-invariance of the sections of ξ andη that yields a unique splitting. This splitting
determines the reduced DO.

In the proposed procedure for reduction, one needs only to calculate the prolongation of
the Lie derivatives and to solvealgebraic equations. This is generally easier than finding an
ansatz for the invariant sections (to find such an ansatz, one would have to solve a system
of first order partial differential equations).

In this “local” approach to dimensional reduction, one does not need to know a global
ansatz for the invariant sections, but only their Taylor expansion up to orderk aroundN
(for DOs of orderk).

Below we illustrate the method of dimensional reduction of invariant differential operators
on elementary examples. Notice how simple the calculations are (as opposed to, say, change
of variables), and the fact that, although the reducing group in the second example is
non-compact, the reduction procedure is essentially the same.

Example 5.1. Let us consider theO0(3)-reduction to the Laplace operator acting on scalar
functions inR

3.
For a base of the reduced bundle let us choose the transversal to the orbits ofO0(3)

manifoldN := {(0,0, z)|z > 0}.
The generators ofO0(3) are

X1 := x∂y − y∂x, X2 := x∂z − z∂x, X3 := y∂z − z∂y.

The infinitesimal symmetry conditionX2f = 0 implies∂xf = (x/z)∂zf . The restriction
to the submanifoldN of thex-component of the first prolongation of this condition yields
∂xxf = (1/z)∂zf on N . Similarly, the conditionX3f = 0 gives∂yyf = (1/z)∂zf on
N . Plugging these equations in∆ := ∂xx + ∂yy + ∂zz, we obtain the reduced Laplace
operator,

∆O0(3) =
d2

dz2
+ 2

z

d

dz
,
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acting on functions defined onN—as expected, for this choice ofN , ∆O0(3) is the radial
part of the Laplacian.

Example 5.2. As an example of reduction with a non-compact reducing group consider
theO0(1,2)-reduction of the(1+ 2)-dimensional D’Alembertian

�3 := ∂xx + ∂yy − ∂zz

in the interior of the “future” light cone. LetN := {(0,0, z)|z > 0}.
The generators ofO0(1,2) arex∂y−y∂x, x∂z+z∂x , andy∂z+z∂y . The same calculation

as in the previous example yields∂xxf = −(1/z)∂zf , ∂yyf = −(1/x)∂zf on N , so the
reduced wave operator is

(�3)O0(1,2) = −
(

d2

dz2
+ 2

z

d

dz

)
.

Note that theO0(3)-invariant harmonic functions satisfy the same equation as theO0
(1,2)-invariant solutions of the wave equation.

6. Dimensional reduction of a group action

We need some details concerning the dimensional reduction of a group action. Letξ =
(E, π, B) be aG-reducible vector bundle, the Lie groupK act onξ by vector bundle
morphisms(F, f ), and the actions ofG andK commute. Due to the mutual commuta-
tivity of the actions(T , t) and (F, f ) of G andK on ξ , the action ofk ∈ K maps the
G-invariant sections ofξ into G-invariant ones (i.e.C∞(ξ)G is a K-invariant subset of
C∞(ξ)). This fact allows us to define a natural action(FG, fG) of K on the reduced bundle
ξG = (stξN , πG,N) as follows. Letk ∈ K, b ∈ N , σ ∈ (ξG)b = stξb, and letg ∈ G be
such thattg ◦ fk(b) ∈ N , then

(tG)k(b) := tg ◦ fk(b), (FG)k(σ ) := Tg ◦ Fk(σ ) ∈ (ξG)(tG)k(b).

The actionkG of k ∈ K onC∞(ξG) is

kG : C∞(ξG)→ C∞(ξG) : γ → kG(S) := θ−1 ◦ k ◦ θ ◦ S.

Induced representations are an example of dimensional reduction of a group action.
Let ξ andη beG-reducible vector bundles overB with the same actiont of G on B.

Let the Lie groupK act onξ andη by vector bundle morphisms with the same actionf

of K on B. Let the action(T ξ , t) of G on ξ commute with the action(F ξ , f ) of K on
ξ , and the same hold for the actions(T η, t) and(F η, f ) on η. It is easy to see that if a
DO D ∈ Diff k(ξ, η) is simultaneouslyK- andG-invariant, then the reduced DODG ∈
Diff k(ξG, ηG) is invariant under the reduced actions(F

ξ
G, fG) and(F

η
G, fG) of K on ξG

andηG.
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